Used Equipment Store

Account Benefits

Get a customised view of the Used Equipment Store

Manage your details to get quick responses by the team

Stay up-to-date on specials, prices and availability

Already have an account? Log In

Create Your Account

Sign up to receive marketing or promotional emails from Keysight

By submitting this form, you are providing Keysight with your personal data. For information on how we use this data, see the Keysight Privacy Statement.

Keysight Oscilloscope Glossary

What Is a Transient in Electronics?

This article is brought to you by the Keysight Used Equipment Store. The information applies to used and new equipment.

If you know which Keysight model is of interest to you and matches your technical requirements, visit the Used Equipment Store to see if you can save with our offers.
View Our Offers

For more Test and Measurement knowledge and tips, view all technical articles. Visit our resources
Keysight assumes no liability for the completeness, correctness and accuracy of all content on this website and all of its content. Please read here the terms of use of this website.

Your browser limits use of the Used Keysight Equipment website.
Please consider switching to a current version of Chrome, Firefox, Edge or IE11 to use this site.

Imagine fine-tuning a circuit for hours, only to have it rendered useless by a microsecond-long voltage spike. 

For electrical engineers who deal with complex circuits and systems, transients are not just theoretical concepts but real-world events that can disrupt operations, damage components, or induce unexpected behavior. 

In this comprehensive guide, we will delve into the fast-paced world of electrical transients: what they are, how they manifest, and most importantly, how to measure and manage them effectively.

What Constitutes a Transient?

A transient event in electronics involves abrupt changes in voltage or current conditions. These changes occur for a limited duration, typically in the order of microseconds or milliseconds. Transients can take the form of:

  • Voltage spikes
  • Current surges
  • Damped oscillations
Key Takeaway
Transients in electronics serve as quick, unexpected changes in voltage or current that can significantly impact system performance and component lifespan. Properly identifying and understanding these events is crucial for preventing damage and ensuring operational reliability.

Empower Your Projects With a Used Keysight Oscilloscope

  • Like-new Condition
  • Updated Firmware
  • Full Calibration
  • New Accessories
  • Like-new Warranty
  • Customization possible

Learn more

  • Savings of up to 90%
  • Working Condition
  • Calibrated or Tested
  • 30-Day Right-of-Return
  • No Customization
  • Shipping to limited countries

Learn more

Stay Up to Date on Used Equipment!

Don’t miss special offers, news and announcements on the latest used equipment. Unsubscribe any time.

Get Email Updates

Select up to 3 instruments to compare

Cancel
Select another instrument to compare
Starting at
Select another instrument to compare
Starting at
Select another instrument to compare
Starting at

Enable Notifications

In order to use this feature, you need to enable notifications.

Manage notification preferences

USD



Keysight Used
Configuration:
Customization available
Shipping: Limited countries only
Warranty: 90 days
Accessories Not included
For professional and industrial use only
By submitting this quote request, you are providing Keysight with your personal data. For information on how we use this data, see the Keysight Privacy Statement.

Parameters to Describe Transients

When analyzing a transient, consider the following 4 key parameters:

  1. Amplitude: The maximum value that the transient achieves.
  2. Duration: The time interval over which the transient persists.
  3. Frequency: In the case of oscillatory transients, the rate at which the oscillation occurs.
  4. Rise time/fall time: The time taken for the transient to rise or fall between specified reference points.

Types of Transients

Understanding transients starts with categorizing them into their basic types. Not all transients are created equal, and their distinctions lie in how they affect voltage, current, or oscillatory conditions.

Voltage Transients

Voltage transients are rapid changes in voltage levels that can significantly exceed or fall below the nominal operating voltage of a circuit. They are often categorized into:

  • Positive voltage spikes: These are abrupt rises in voltage that exceed the regular operational levels.
  • Negative voltage dips: Also known as 'sags', these are abrupt reductions in voltage.
  • Repetitive: Occur periodically, such as those produced by power line interference.
  • Random: Occur unpredictably, often due to external factors like lightning or grid instability.

Engineers monitor voltage transients closely as they can cause insulation breakdown in devices, leading to immediate or gradual failure.

Typical Sources:

  1. Rapid switching in digital circuits
  2. Inrush current during capacitor charging
  3. Switching power supplies

Current Transients

Current transients are rapid changes in the current flowing through an electrical component or circuit. They generally occur due to:

  • Inductive kickback: Often observed in inductive elements like motors and transformers, this is a sudden spike in current when the inductive element is de-energized.
  • Capacitive surge: A sudden inrush of current occurs when a capacitor charges rapidly, especially during power-up conditions.
  • Load changes: Sudden addition or removal of loads can cause temporary current transients.

Current transients usually accompany voltage transients and can lead to overheating or even melting of conductors if not managed properly.

Typical Sources:

  1. Motor startup/shutdown
  2. Transformer energizing/de-energizing
  3. Circuit breaker operation

Oscillatory Transients

Oscillatory transients involve periodic fluctuations in voltage or current, often with a decaying amplitude over time. These transients are characterized by:

  • Frequency: The rate of oscillation, often determined by the resonant frequency of the circuit.
  • Damping factor: This describes how quickly the oscillations decay over time.
  • Amplitude: The maximum deviation from the mean value, which can vary over time.

Oscillatory transients are commonly observed in circuits that have both inductive and capacitive elements, forming a resonant circuit.

Typical Sources:

  1. Resonant circuits
  2. LC filters
  3. Reactive components in power systems

By understanding these types of transients in detail, electrical engineers can better design systems to cope with these inevitable but manageable phenomena.

Causes of Transients

The occurrence of transients is seldom random; rather, it is traceable to specific causes that engineers closely examine for mitigation. 

Understanding these sources enables more effective diagnostics and preventive strategies. Here's a focused look at these major causes.

    Switching Operations

    The act of turning devices on or off in electrical circuits can cause transients, especially in high-frequency operations. 

    This is true for both mechanical and solid-state switches, as well as grid-level operations in power utilities. 

    These switching activities often result in voltage spikes and inrush currents in connected loads.

    Inductive Loads

    Devices like motors and transformers inherently resist changes in current due to their inductive nature. 

    When they experience sudden power changes, they release stored energy in the form of back electromotive force (EMF). 

    This inductive kickback can cause transient voltage spikes that may require specialized protection mechanisms.

    Capacitive Changes

    Capacitors contribute to transients when they experience sudden charging or discharging, commonly observed during power-up sequences of electronic devices. 

    These capacitive transients can lead to overshooting in voltage levels and may even compromise the stability of feedback systems.

    External Factors

    Factors outside circuit design, such as lightning strikes, electromagnetic interference (EMI), and grid fluctuations, can also induce transients. 

    These external factors can lead to catastrophic device failure and may induce errors in data or operational behavior.

    Understanding these causes enables engineers to foresee potential transient events and implement appropriate safeguards to mitigate their impacts.

    Effects of Transients

    Not all transients are harmful, but the ones that are can wreak havoc on electrical systems. Their impact can range from immediate damage to long-term degradation. 

    Here's a closer look at some key effects of transients.

    Circuit Damage

    • Component failure: High-amplitude transients can exceed the voltage or current ratings of components, leading to immediate burnout or failure.
    • Insulation breakdown: Transients can compromise the insulation of wires and components, leading to shorts or circuit interruptions.
    • Overheating: Prolonged exposure to transients can cause excessive heat, further exacerbating component damage.

    Data Corruption

    • Signal integrity: Transients can introduce noise into data lines, affecting the quality and integrity of transmitted signals.
    • False triggering: In digital circuits, a voltage transient can be mistaken for a legitimate signal, causing unintended operations.
    • Memory errors: In computing and data storage systems, transients can flip bits, leading to data corruption or system crashes.

    Reduced System Life

    • Material fatigue: Continuous exposure to minor transients can lead to material degradation over time, reducing the lifespan of components.
    • Operational instability: Persistent transients can result in system instability, requiring frequent maintenance and potentially leading to system failure.
    • Economic impact: The cumulative effects of transients, if not managed, can result in higher costs due to frequent replacements and downtime.

    Understanding these effects allows engineers to better assess the risks associated with transients and implement preventive measures to mitigate their impact.

    Measuring Transients

    Accurate measurement of transients iscritical for both diagnostic and preventive approaches in electrical engineering. 

    By employing specialized tools and techniques, engineers can precisely characterize these fast phenomena to implement effective mitigation strategies.

    Tools for Measuring Transients

    • Oscilloscopes: Oscilloscopes are the go-to instruments for capturing transient waveforms in real-time. They allow engineers to visualize voltage and current changes over time, providing immediate insights into transient behavior.
    • Transient recorders: Unlike oscilloscopes, transient recorders focus on logging transient events for subsequent analysis. They are particularly useful for capturing infrequent or random transients that may not be easily observable in real-time.
    • Spectrum analyzers: Spectrum analyzers break down the transient signal into its frequency components. By examining these frequencies, engineers can gain insights into the causes and potential impacts of the transient.

    Techniques for Effective Measurement

    • Bandwidth considerations: Ensure that the measurement system has adequate bandwidth. The bandwidth must be high enough to capture the highest frequency components of the transient without distortion.
    • Oscilloscope settings: Adjust the oscilloscope settings to suit the transient being measured. This includes setting the appropriate trigger level and time scale to accurately capture the transient waveform.
    • Data logging: For capturing repetitive transients, set up the oscilloscope or transient recorder to log data over time. This enables a more detailed analysis and helps in recognizing patterns that might point to specific issues or causes.
    • Signal integrity: Ensure that the measurement setup itself does not introduce noise or artifacts that could compromise the accuracy of transient measurement.

    By using these specialized tools and techniques, engineers can not only identify and measure transients but also develop effective strategies for their mitigation.

    Transient Suppression Techniques

    • Surge protectors: Divert excess voltage away from sensitive components.
    • Ferrite beads: Suppress high-frequency noise.
    • Inductors and capacitors: Filter out transients in power lines.
    • Snubber circuits: Dampen oscillatory transients.

    Transient Types, Causes, Effects, and Tools Guide

    Type of TransientCommon CausesKey EffectsRecommended Measurement Tools
    Voltage TransientSwitching operations, inrush currents, power line interferenceComponent failure, insulation breakdownOscilloscope, transient recorder, spectrum analyzer
    Current TransientMotor start/stop, transformer energizing, circuit breaker operationOverheating, conductor meltingOscilloscope, transient recorder
    Oscillatory TransientResonant circuits, LC filters, reactive componentsSignal distortion, stability issuesSpectrum analyzer, Oscilloscope

    Browse Our Selection of Used Oscilloscopes

    • Like-new Condition
    • Updated Firmware
    • Full Calibration
    • New Accessories
    • Like-new Warranty
    • Customization possible

    Learn more

    • Savings of up to 90%
    • Working Condition
    • Calibrated or Tested
    • 30-Day Right-of-Return
    • No Customization
    • Shipping to limited countries

    Learn more

    FAQs

    Get answers to Frequently Asked Questions about Shipping, Payment, Quote Processes, Pricing, Stores, etc.

    Select up to 3 instruments to compare

    Cancel
    Select another instrument to compare
    Starting at
    Select another instrument to compare
    Starting at
    Select another instrument to compare
    Starting at

    Enable Notifications

    In order to use this feature, you need to enable notifications.

    Manage notification preferences

    USD



    Keysight Used
    Configuration:
    Customization available
    Shipping: Limited countries only
    Warranty: 90 days
    Accessories Not included
    For professional and industrial use only
    By submitting this quote request, you are providing Keysight with your personal data. For information on how we use this data, see the Keysight Privacy Statement.

    Conclusion

    Transients in electronics are not just phenomena to observe but challenges to understand, measure, and mitigate. 

    Whether they manifest as voltage spikes, current surges, or oscillatory patterns, these fast occurrences can have long-lasting impacts on system performance and reliability. 

    Armed with the right knowledge about their types, causes, and effects, engineers can select the appropriate tools for effective measurement and analysis.

    Ready to take your transient measurements to the next level? Visit Keysight Used Equipment Store for premium used oscilloscopes, spectrum analyzers, function generators, and multimeters. 
    These high-quality instruments provide the accuracy and reliability you need for in-depth transient analysis. 

    Don't let transients disrupt your systems; equip yourself with the best tools to analyze and tackle them head-on.

    Whenever You’re Ready, Here Are 5 Ways We Can Help You

    1. Browse our Premium Used Oscilloscopes.
    2. Call tech support US: +1 800 829-4444 
      Press #, then 2. Hours: 7 am – 5 pm MT, Mon– Fri
    3. Talk to our sales support team by clicking the icon (bottom right corner) on every offer page
    4. Create an account to get price alerts and access to exclusive waitlists.
    5. Talk to your account manager about your specific needs.

    Subscribe to Get Our Latest News, Updates, and Articles.

    Get Email Updates

    This article is brought to you by the Keysight Used Equipment Store. The information applies to used and new equipment.

    If you know which Keysight model is of interest to you and matches your technical requirements, visit the Used Equipment Store to see if you can save with our offers.
    View Our Offers

    For more Test and Measurement knowledge and tips, view all technical articles. Visit our resources
    Keysight assumes no liability for the completeness, correctness and accuracy of all content on this website and all of its content. Please read here the terms of use of this website.